
IJDCST @October Issue- V-1, I-6, SW-39
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

141 www.ijdcst.com

Fine Tune Updates on Data Streaming Using False Tolerant

EDF

K.Chaitanya Kumar 1, Dr J.Srinivas Rao2

1Student, Nova College of Engineering and Technology, Ibrahimpatnam, Krishna Dist, Andhra Pradesh, India

2 Professor, Nova College of Engineering and Technology, Ibrahimpatnam, Krishna Dist, Andhra Pradesh, India

Abstract: Data streaming manage systems is a computer program to manage continuous data streams. For this

process present in the streaming of object relation data management system applications. Traditionally developed

applications are new arrived application status on data ware house streaming applications. In these applications we

are using Earliest Deadline First scheduling algorithm for developing dynamic update on data streaming in ware

houses. Due to the burden of the overhead presented in EDF on data warehouse server, it will take more complexity

for solving streaming in data warehouse server. So in this paper we propose to extend our existing work for

supporting dynamic updates in earliest data steaming applications. We propose FTEDFS; it is the acronym for Fault

Tolerant Earliest Deadline First Scheduling technique. In this technique we ignore unspecified results of the every

user’s content and theirs usable message forward to other user present in the network. Our experimental results show

efficient data steaming process and give efficient results generation of data construction in data ware housing.

Index Terms: Time-redundancy, real-time scheduling, fault-tolerance, Data warehouse maintenance, online

scheduling uniprocessor embedded systems, earliest deadline- first.

I. INTRODUCTION

A DSMS also offers a flexible query processing so

that the information need can be expressed using

queries. However, in contrast to a DBMS, a DSMS

executes a continuous query that is not only

performed once, but is permanently installed.

Therefore, the query is continuously executed until it

is explicitly uninstalled. Since most DSMS are data-

driven, a continuous query produces new results as

long as new data arrive at the system. A data

warehouse is database used for reporting and data

analysis. It is central repository of data which is

created by integrating data from one or more

disparate sources. Data warehouses store current as

well as historical data and are used for creating

trending reports for senior management reporting

such as annual and quarterly comparisons.

IJDCST @October Issue- V-1, I-6, SW-39
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

142 www.ijdcst.com

Figure 1: Data ware housing process with efficient

result generation.

 The data stored in the warehouse

are uploaded from the operational systems (such as

marketing, sales etc., shown in the figure to the

right). The data may pass through an operational data

store for additional operations before they are used in

the DW for reporting. The typical ETL-based data

warehouse uses staging, data integration, and access

layers to house its key functions. The staging layer or

staging database stores raw data extracted from each

of the disparate source data systems.

 We then propose a scheduling framework

that handles the complications encountered by a

stream warehouse: view hierarchies and priorities,

data consistency, inability to preempt updates,

heterogeneity of update jobs caused by different inter

arrival times and data volumes among different

sources, and transient overload. A data warehouse

constructed from an integrated data source system

does not require ETL, staging databases, or

operational data store databases. The integrated data

source systems may be considered to be a part of a

distributed operational data store layer. Data

federation methods or data virtualization methods

may be used to access the distributed integrated

source data systems to consolidate and aggregate data

directly into the data warehouse database tables.

Transient faults in real time systems are generally

tolerated using Time Redundancy applications

present in our dynamic data streaming.

Figure 2: Data streaming textual taxonomy

independent assurance.

 One important issue in real-time embedded

systems is the scheduling of tasks in these systems.

Modern real time scheduling research has mostly

concentrated on generating efficient algorithms for

guaranteeing that tasks meet their deadlines without

considering faults.

By using fault tolerant issues present in our proposed

work criteria. Our proposed technique should be used

to develop efficient data streaming on data ware

housing applications. Real time system process the

efficient data accessing for the behavior of the data

streaming applications present in the data

warehousing process.

II. BACKGOUND WORK

This enables a real-time decision support for

Business-critical applications that receive streams of

append-only data from external sources.

http://en.wikipedia.org/wiki/Uploading_and_downloading
http://en.wikipedia.org/wiki/Operational_data_store
http://en.wikipedia.org/wiki/Operational_data_store
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Staging_(data)
http://en.wikipedia.org/wiki/Data_virtualization

IJDCST @October Issue- V-1, I-6, SW-39
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

143 www.ijdcst.com

• Online stock trading, where recent transactions

generated by multiple stock exchanges are compared

against historical trends in nearly real time to identify

profit opportunities.

• Credit card or telephone fraud detection, where

streams of point-of-sale transactions or call details

are collected in nearly real time and compared with

past customer behavior.

• Network data warehouses maintained by Internet

Service Providers (ISPs), which collect various

system logs and traffic summaries to monitor

network performance and detect network attacks. For

this application development traditional used data

processing techniques are as follows: Earliest

Deadline First algorithm for processing real time data

efficiency between every user present in our network.

In this paper we propose to develop the Fault

Tolerant Earliest Deadline First algorithms/technique

is clear to describe the scheduling process present in

the data ware housing specifications. Using our

proposed work we will develop the performance of

the steaming present in our ware house construction

process.

In fact for any pair of average task utilization and

mean time to failure (α, MTTF) the efficient time

redundancy is added to the schedule. An event driven

simulator is designed and implemented for

performance evaluation. Moreover, this scheme can

be applied to any non-fault-tolerant scheduling policy

for preemptive and periodic tasks (e.g., Rate-

Monotonic (RM) scheduling policy).

Our proposed work gives efficient data transmission

between every user aspect present in the data ware

housing applications.

III. EXISTING APPROACH

The traditional data warehouses are typically

refreshed during downtimes, streaming warehouses

are updated as new data arrive. Where traditional data

warehouse store layers of complex materialized

views over terabytes of historical data. Traditionally

developed techniques are accessed in the present

situations of the data streaming process of the every

user data. In this we are planned to data processing

using scheduling data of particular user aspects in

data ware housing applications.

Figure 3: Data streaming process using EDF

algorithms.

Each data stream i is generated by an external source

with a batch of new data present in the data ware

housing applications. An important data process of

traditional data streaming is, it access information

due to the insufficient data streaming process present

in our proposed work.

IV. PROPOSED APPROACH

The general approach to fault-tolerance in

uniprocessor systems is to make sure there is enough

slack in the schedule to allow for re-executing of any

task instance, if a fault occurs during its execution.

IJDCST @October Issue- V-1, I-6, SW-39
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

144 www.ijdcst.com

Tasks are executed following the usual EDF scheme

if no faults occur (the slack is not used). However,

when a fault occurs in a task, a recovery scheme is

used to re-execute that task. In the EDF policy with

utilization bound less than 100%, there is a natural

amount of slack in uniprocessor.

Figure 4: (a) tasks are scheduled in not present

faults, (b) τ 12 has encountered with a fault, (c)

the recover scheme has been called and τ 12 has

been re-executed using time-redundancy.

 Our proposed work can be efficiently data

streaming of every user present in data ware housing

applications.

V. PERFORMANCE RESULTS

In this section we describe the efficient data

streaming ware housing applications. The proposed

data warehouse stores integrated information from

multiple distributed data sources. In effect, the

warehouse stores materialized views over the source

data. The problem of ensuring data consistency at the

warehouse can be divided into two components:

ensuring that each view reflects a consistent stare of

the base data, and ensuring that multiple views are

mutually consistent. Guarantying multiple view

consistency (MVC) and identify and define formally

three layers of consistency for materialized views in a

distributed environment.

For example data streaming as follows:

Example: consider two tasks with c1 = 2,T1 = d1 =

5, c2 = 2, T2 = d2 = 8 . The two utilizations are 2 / 5

= 0.4 and 2 / 8 = 0.25 respectively. Assuming that

backup utilization is 0.2, i.e.,UB = 0.2 . (3.2), gives

us a bound of 0.8 while the sum of utilizations of the

task is 0.65. Since 0.65 0.8 1 = = ≤ − = = Σ FT EDF

N i i U U u , the tasks are schedulable. In figure 1.a

no fault has occurred while the tasks are executed. In

figure 4.b fault has occurred when τ 12 (τ 12 denotes

the second period of τ 1) was being executed and has

been detected at time 7, then recovery scheme has

been called, i.e., new copy of τ 1 has been added to

the schedule (figure 4.c), and has been completed

using the slack time (time redundancy). By

increasing the value of time redundancy has a

considerable scheduling process.

Figure 5: Comparison results of the existing EDF

and our proposed FTEDF.

As shown in the above diagram we are showing data

streaming with different data aware applications.

VI. CONCLUSION

In this paper we propose to access the services of the

data streaming applications using efficient data

IJDCST @October Issue- V-1, I-6, SW-39
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

145 www.ijdcst.com

transfer. For this application development traditional

development applications are Earliest Deadline First

streaming applications. But these abstraction

processes are the taking efficient data streaming

applications based on time invariant with feasibilities.

Dynamic scheduling is online and uses scheduled by

test to determine whether a set of tasks can meet their

deadlines. The present paper talks about static and

dynamic scheduling algorithms and operating

systems support for these mechanisms. Efficient data

transmission between every user present in our

proposed work data accessing can be done with

different data properties. Our experimental result

shows the data efficiency with increasing of the data

processing between real time systems specifications.

As further improvement of our proposed work, in our

proposed we mainly concentrate on the data

transferring with low time redundancy process. We

plan to extend to our proposed in developing of

“Granularity” with increasing efficient data streaming

process in ware house applications.

VII. REFERENCES

[1] Lukasz Golab, Theodore Johnson, and Vladislav

Shkapenyuk,” Scalable Scheduling of Updates in

Streaming Data Ware Houses”, IEEE Transactions

On Knowledge And Data Engineering, Vol. 24, No.

6, June 2012.

[2] Hakem Beitollahi, Seyed Ghassem Miremadi2, ”

Fault-Tolerant Earliest-Deadline-First Scheduling

Algorithm”, 1-4244-0910-1/07/$20.00 ©2007 IEEE.

[3] R. Al-Omari, A. K. Somani, G. Manimaran,

“Efficient overloading techniques for primary-backup

scheduling in real-time systems”, Journal of Parallel

and Distributing Computing, 64 (2004) 629–648,

March. 2004.

[4] D. Mossé, R. G. Melhem, S. Ghosh, “A No

preemptive Real-Time Scheduler with Recovery from

Transient Faults and Its Implementation”, IEEE

Trans. Software Eng., vol.29, no.8, pp. 752-767 ,

2003.

[5] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A.

Simitsis, and N.-E. Frantzell, “Supporting Streaming

Updates in an Active Data Warehouse,” Proc. IEEE

23rd Int’l Conf. Data Eng. (ICDE), pp. 476- 485,

2007.

[6] M. Sharaf, P. Chrysanthis, A. Labrinidis, and K.

Pruhs, “Algorithms and Metrics for Processing

Multiple Heterogeneous Continuous Queries,” ACM

Trans. Database Systems, vol. 33, no. 1, pp. 1-44,

2008.

[7] L. Golab, T. Johnson, and V. Shkapenyuk,

“Scheduling Updates in a Real-Time Stream

Warehouse,” Proc. IEEE 25th Int’l Conf. Data Eng.

(ICDE), pp. 1207-1210, 2009.

